Un equipo internacional, liderado por el Consejo Superior de Investigaciones Científicas (CSIC), ha revelado por primera vez la estructura del adenovirus de tipo 41 (Ad41), uno de los principales agentes virales que provocan la gastroenteritis infantil. El trabajo, publicado en Science Advances, sugiere que las diferencias observadas entre la envoltura proteica (cápsida) de este virus y la de otros adenovirus de tipo respiratorio podrían explicar la predilección del primero por el aparato digestivo. El conocimiento de la estructura del virus puede contribuir a desarrollar terapias dirigidas de manera exclusiva al tracto gastrointestinal y a nuevas vacunas basadas en los adenovirus, como las que se están desarrollando actualmente frente al virus SARS-CoV-2.
Un grupo de investigación donde participan científicos del Instituto de Biomedicina de Valencia (IBV) y del Centro Nacional de Biotecnología (CNB), ambos del Consejo Superior de Investigaciones Científicas (CSIC), junto a la Universitat de València (Instituto Universitario Biotecmed) y la Universidad Autónoma de Madrid, han aclarado el mecanismo que emplea la bacteria patógena Salmonella para controlar la expresión de cientos de sus genes, entre ellos los que controlan la adaptación a nuestro organismo y, por tanto, su capacidad para infectarnos. El hallazgo, publicado en la revista Nucleic Acids Research, abre la puerta a diseñar nuevos fármacos antimicrobianos.
El trabajo describe con precisión el mecanismo de funcionamiento de la proteína RcsB de Salmonella para controlar la expresión de un número elevado de genes. RcsB es una proteína que se une al ADN para controlar la expresión de genes cuyos productos son necesarios para reorganizar la arquitectura de la envuelta celular en respuesta a daños externos. Esta proteína recibe señales de otras proteínas dispuestas en la envuelta y que actúan de antenas, formando todas ellas el denominado ‘sistema Rcs’, conservado en la familia de las enterobacterias (Enterobacteriaceae). Esta familia está formada por más de 100 géneros bacterianos que incluyen especies y serovares como Salmonella enterica serovar Typhi (S. typhi) o Shigella dysenteriae, causantes de la fiebre tifoidea y la disentería en humanos.
Para identificar especies vegetales en Botánica, se utilizan claves de clasificación basadas en las características visuales que presentan las plantas. De esta forma se pueden distinguir especies cercanas que tiene una característica diferencial. En el caso de Arabidopsis thaliana, la planta más utilizada como modelo en investigación, una de sus características para identificarla es la presencia de pelos (tricomas) en las hojas pero no en los frutos.
Sin embargo, el nuevo trabajo del grupo dirigido por el investigador Carlos Alonso-Blanco en el Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CNB-CSIC) ha identificado poblaciones naturales de A. thaliana que desarrollan pelo en los frutos, lo que proporciona una nueva característica para esta planta. Su trabajo, publicado en la revista The Plant Cell detalla los mecanismos genéticos y moleculares que han permitido la aparición de pelo en los frutos de Arabidopsis.
El día 11 de febrero se celebra el Día Internacional de la Mujer y la Niña en la Ciencia. En el CNB-CSIC nos unimos a la Iniciativa 11 de Febrero, y este año, ademas del Seminario de Concha Monje, participamos en varias actividades coordinadas por los centros CSIC el campus de Cantoblanco:
- Escape Road: A la búsqueda de las científicas Nobel y no Nobel.
Casa de la Juventud de Tres Cantos. 13 febrero. Exposición y concurso. Acceso libre y gratuito.
Además:
- CNB: Webinar Concha Monje, Robótica: Retos y Aplicaciones, 11 Febrero 16:00
- #Youtubers por un día IFT
- ICMM: 8 febrero, 12:00. Esther Garcés, Silvia Donoso (ICM, CSIC). Plan de Igualdad de Género como instrumento para el avance en la igualdad en la investigación, el ejemplo en el Institut de Ciències del Mar
- ICMM-UAM: Talleres en la Facultad de Profesorado de la UAM. 17 febrero, 12:00 y 15:30. Elena Bascones (ICMM, CSIC). Por qué las niñas no estudian ciencias técnicas y qué podemos hacer en clase.
- ICMAT: 11 febrero, 12:00. Marta Folgueira López (UCM). Constelaciones matemáticas.
- ICV. Ciclo de webinarios, ICV en Femenino, 8 de Febrero y 12 de marzo
- CIAL. Quiz Online, Webinars, talleres
- Escape Road: A la búsqueda de las científicas Nobel y no Nobel. Campus UAM
La resistencia de las bacterias a los antibióticos es uno de los principales problemas actuales de salud pública. De acuerdo con estimaciones recientes, aproximadamente 700.000 personas mueren cada año en el mundo como consecuencia de infecciones resistentes a los antibióticos y, de no revertirse la tendencia actual de diseminación de la resistencias, en el 2050 las infecciones resistentes podrían convertirse en la primera causa de mortalidad en el mundo. Por este motivo, existe una necesidad urgente de desarrollar nuevas estrategias terapéuticas destinadas a contrarrestar las bacterias resistentes a antibióticos.
Investigadores del Centro Nacional de Biotecnología perteneciente al Consejo Superior de Investigaciones Científicas (CNB-CSIC), en colaboración con el Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS) del Hospital Universitario Ramón y Cajal en Madrid, han descrito una nueva estrategia basada en explotar la respuesta fisiológica que inducen los plásmidos en las bacterias y lograr así revertir la evolución de las resistencias a los antibióticos. Los detalles del trabajo, publicado en la revista eLife, podrían sentar las bases para el desarrollo de nuevas terapias contra las bacterias portadoras de estos plásmidos de resistencia, basándose en un fenómeno de la sensibilidad colateral asociada a ellos.
El Consejo Superior de Investigaciones Científicas (CSIC) y la empresa química Ercros han firmado un acuerdo para diseñar un proceso de producción de biopolímeros bacterianos. Estos materiales son útiles tanto para usos de corta como de larga duración y se aplican en sectores industriales tan diversos como el del envase y embalaje, el agrícola y el cosmético.
“Conseguir polímeros de base biológica renovable es importante para disponer de materiales sostenibles que permitan avanzar hacia la economía circular. La nueva tecnología abaratará los costes de producción de estos biopolímeros al disponer de un proceso más eficiente, más sostenible (ya que emplea materias primas de baja huella de carbono) y que aporta ventajas derivadas de las prestaciones de los materiales”.
En este proyecto participan dos equipos de investigación del CSIC agrupados en la plataforma temática interdisciplinar SusPlast (Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy). Los dos equipos son el Grupo de Biotecnología de Polímeros, del Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), dirigido por Auxiliadora Prieto, que también coordina la plataforma; y el Grupo de Biotecnología de Sistemas, del Centro Nacional de Biotecnología (CNB-CSIC), dirigido por Juan Nogales.
El candidato vacunal MVA-CoV-2-S, que usa como vehículo el virus vaccinia modificado de Ankara (MVA) para transportar una proteína del SARS-CoV-2 (la proteína S) que estimule la defensa inmunitaria contra el coronavirus, ha probado su eficacia en modelos animales, y está por tanto listo para seguir avanzando hacia las pruebas clínicas, según se publica en la prestigiosa revista Journal of Virology.
El proyecto de vacuna para el SARS-CoV-2 que dirigen los virólogos Mariano Esteban y Juan García Arriaza es el más adelantado de las tres vacunas contra la covid-19 que se están desarrollando en el Consejo Superior de Investigaciones Científicas (CSIC).
Investigadores del Centro Nacional de Biotecnología del Consejo Superior de Investigaciones Científicas (CNB-CSIC) desarrollan un nuevo sistema de mutagénesis in vivo que permite generar variantes de proteínas de una forma rápida y sencilla en bacterias, y se puede adaptar para su utilización en levaduras y otras células eucariotas. El nuevo sistema, publicado en Nature Communications, permite la selección de variantes de una forma continua y con poca manipulación.
Las técnicas de evolución molecular dirigida en el laboratorio permiten generar variantes de proteínas con interés biotecnológico o biomédico como anticuerpos o enzimas terapéuticas con funciones mejoradas o incluso nuevas de manera mucho más eficaz. Hasta hace poco tiempo, la mayoría de las técnicas de evolución dirigida se realizaban in vitro, en procesos lentos y tediosos, por lo que en los últimos años hay un interés creciente por el desarrollo de técnicas de evolución molecular in vivo.
Ahora, la nueva técnica desarrollada por el grupo del investigador Luis Ángel Fernández en el Centro Nacional de Biotecnología del CSIC permite dirigir las mutaciones de manera específica a la región génica de interés dentro de las células, expresar las variantes y seleccionarlas de una forma rápida, continua y sin mucha manipulación.